

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijareeie.com

Vol. 6, Issue 1, January 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0601033 223

A Novel Technique for Device Encryption on
Android Platform for Data Restoration

Bappa Mondal1, Sundar Srinivasan2, Rajesh Kumar Panda3, Dr. K B ShivaKumar4

Delhi Technological University, Delhi, India1

Research Scholar [Wireless Cognitive Radio N/Ws], Mewar University, Rajasthan, India2

Lead Engineer, Mobile R&D, India3

Professor & HOD, Dept. of TCE, Sri Siddhartha Institute of Technology, Karnataka, India4

ABSTRACT: In modern communication system, communication through mobile phones plays a vital role where mobile phones
have become part and parcel of common man’s daily life. At the same time there is every possibility of losing the phones either by
misplacing the hand set or the same being theft. In such cases whatever the data stored by the owner of the mobile should be
protected, This paper proposes a technique for data restoration by improvising the use of On Device Encryption, ODE which is a
solution provided from Google and used for encrypting user data (/data), so that if phone is lost, user data is recoverable. By
default, ODE encrypts whole partition for /data, but from Lollypop OS, Fast Encryption technique encrypts only valid data present
on device, so encryption is much faster than earlier versions.

KEYWORDS: ODE, Fast Encryption, Android OS, Disk Encryption.

I. INTRODUCTION

Disk encryption uses an encryption algorithm to convert every bit of data that goes to disk to Cipher text, ensuring that data
cannot be read from the disk without the decryption key. The disk decryption key is usually stored, encrypted and requires an
additional key encryption key (KEK) in order to be decrypted. The KEK can either be stored in a hardware module, such as a
smart card or a TPM, or derived from a passphrase obtained from the user on each boot. When stored in a hardware module, the
KEK can also be protected by a user-supplied PIN or password. Android’s disk encryption uses dm-crypt, currently the standard
disk encryption subsystem in the Linux kernel. Like dm-verity, dm-crypt is a device-mapper target that maps an encrypted physical
block device to a virtual device-mapper device. All data access to the virtual device is decrypted (for reads) or encrypted (for
writes) transparently.

The encryption mechanism employed in Android uses a randomly generated 128-bit key together with AES in CBC mode. CBC
mode requires an initialization vector (IV) that needs to be both random and unpredictable in order for encryption to be secure.
This presents a problem when encrypting block devices, because blocks are accessed non-sequentially and therefore each sector (or
device block) requires a separate IV.

Android uses the encrypted salt-sector initialization vector (ESSIV) method with the SHA-256 hash algorithm (ESSIV:
SHA256) in order to generate per-sector IVs. ESSIV employs a hash algorithm to derive a secondary key s from the disk
encryption key K, called a salt. It then uses the salt as an encryption key and encrypts the sector number SN of each sector to
produce as per sector IV. In other words, IV (SN) = AESs (SN), where s = SHA256 (K).
 Because the IV of each sector depends on a secret piece of information (the disk encryption key), per-sector IVs cannot be
deduced by an attacker. However, ESSIV does not change CBC’s malleability property and does not ensure the integrity of
encrypted blocks. In fact, it’s been demonstrated that an attacker who knows the original plaintext stored on disk can manipulate
stored data and even inject a backdoor on volumes that use CBC for disk encryption.

II. KEY DERIVATION

A. EXPERIMENTAL KEY-DERIVATION
The disk encryption key (called the “master key” in Android source code) is encrypted with another 128-bit AES key (KEK),

derived from a user-supplied password. In Android versions 3.0 to 4.3, the key derivation function used was PBKDF2 with 2,000

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijareeie.com

Vol. 6, Issue 1, January 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0601033 224

iterations and a 128-bit random salt value. The resulting encrypted master key and the salt are stored, along with other metadata
like the number of failed decryption attempts, in a footer structure occupying the last 16 KB of the encrypted partition, called a
crypto footer. Storing an encrypted key on disk instead of using a key derived from the user-supplied password directly allows for
changing the decryption password quickly, because the only thing that needs to be re-encrypted with the key derived from the new
password is the master key (16 bytes). While using a random salt makes it impossible to use precomputed tables to speed up key
cracking, the number of iterations (2,000) used for PBKDF2 is not sufficiently large by today’s standards. (The Keystore key
derivation process uses 8,192 iterations as discussed in Chapter 7. Backup encryption uses 10,000 iterations, as discussed later in
“Android Backup”.) Additionally, PBKDF2 is an iterative algorithm, based on standard and relatively easy to implement hash
functions, which makes it possible for PBKDF2 key derivation to be parallelized, taking full advantage of the processing power of
multi-core devices such as GPUs. This allows even fairly complex alphanumeric passphrases to be brute-force in a matter of days,
or even hours.
In order to make it harder to brute-force disk encryption passwords, Android 4.4 introduced support for a new key derivation
function called Scrypt. Scrypt employs a key derivation algorithm specifically designed to require large amounts of memory, as
well as multiple iterations (such an algorithm is called memory hard). This makes it harder to mount brute-force attacks on
specialized hardware such as ASICs or GPUs, which typically operate with a limited amount of memory.

There are four constrains in ODE,

 Battery Power should be 80% before starting Encryption. Even if user having very limited data e.g. 1 GB, which required
lets a 20% of power; user has to charge 80% before starting encryption as shown in Figure 3.

 Phone should be in charging mode, i.e. power cable should be connected. Again if user having sufficient power, power
cable connection is burden for user.

 After encryption started, if we removed power charger, no warning message shown. If battery power dissipation rate is too
high and device having maximum data that need to encrypt, there is no guarantee 80% power will be enough to complete
encryption.

 Once encryption started, can’t be halted/paused. If we have large data and battery charge is available at starting, now after
some time, user removed power charging cable and battery power dissipation rate is too high, ODE module should
calculate dynamically remaining power required and if required, show user warning message to connect power charging
and pause encryption process.

 Now we are working further where if user can’t connect / ignore to power source after it shows warning message to
connect power cable as shown in Figure 4, then encryption can be paused, save its current state like no of blocks
encrypted, and unfinished blocks and rebooted and when power cable is connected, again we can resume encryption,
from where we left.

B. BATTERY TYPES DISCHARGE CURVES

Below diagram shows the discharge curves of different types of battery. As plotted in Figure 1, Power dissipation rate if not
linear in battery and varying on different types of cell.

With our proposed solution, we can not apply a linear algorithm to calculate power required for encryption of particulate amount
of data. We need to preprocessed some data and make some graph to predict a power consumption for a random amount of power
requirement. Also need to take care of small amount of offset power to add, required for safety, since power dissipation rate is
increase with older battery.

Figure 1: Normal Discharge Rate Plot

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijareeie.com

Vol. 6, Issue 1, January 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0601033 225

The graph below shows typical discharge curves for cells using a range of cell chemistries. Note that each cell
chemistry has its own characteristic nominal voltage and discharge curve. Some chemistries such as Lithium Ion have
a fairly flat discharge curve while others such as Lead acid have a pronounced slope.

The power delivered by cells with a sloping discharge curve falls progressively throughout the discharge cycle. This
could give rise to problems for high power applications towards the end of the cycle. For low power applications,
which need a stable supply voltage, it may be necessary to incorporate a voltage regulator if the slope is too steep.

III. PROPOSED MODEL

 Few improvements have been done till now so that where user does not need to charge 80% of power before starting
encryption as shown in Figure 3 and the power cable need to be connected depending on required data present in /data
partition. During encryption if there is shortage of power for unavoidable cause, encryption will be paused and
warning message will be shown to connect power cable as shown in Figure 2.
The Figure 2 shows the difference in flow of Operation in current scenario and proposed solution. In Proposed
solution, it is dynamically checking for the power requirement with respect to the data need to be encrypted.

Figure 2: Existing Encryption Flow vs Proposed Encryption flow

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijareeie.com

Vol. 6, Issue 1, January 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0601033 226

IV. RESULTS & DISCUSSION

C. A. PROPOSED MODEL RESULTS
Below are few output screenshots Figure 3 & 4 to explain our proposed model,

 For normal case, even if power is 95%, power source need to connect, else “Encrypt Device” option will be
disabled. One improvement version will start encryption with 23% of power, i.e. depending of amount of
data required to encrypt.

 Google support only full encryption until KitKat where all blocks in /data partition will be encrypted even if no
valid data is not present. From Android 5.0 (Lollipop) support Fast Encryption, where only valid memory
block will be encrypted. So our implementation will be for Fast encryption always, so removed “Fast
Encryption” option, as it’s not option for our experiments. For full encryption power requirement is constant
and our implementation is not required

 Now during Encryption for some rare and unavoidable case, device is short of power and power source is
disconnected, for current implementation it will continue to encrypt and possibility of data corruption, where
new implementation will

pause encryption to save some power (CPU cycles) and warning message to user to connect power source to
continue, after user connect power cable, encryption will resume its operation.

In Fig 3: Shows behavior before encryption for power cable for existing and proposed method.
In Fig 4: Shows behavior during encryption for existing and proposed method. In case of proposed method, if
there is lack of power, encryption process stop and ask to connect power source to resume encryption.

D. BATTERY TYPES DISCHARGE CURVES
The Power required is calculated as follows

 Pr (mAh) = Amount of Data to encrypt (GB) * Power consumption (mAh) to encrypt single block (l GB)

Problem with above approach is that battery discharge rate very with different battery charge position. Let say while

in 90% change, it required 100 mAh to encrypt 1 GB of data, where as in 20% change, it required 125 mAh of power

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijareeie.com

Vol. 6, Issue 1, January 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0601033 227

for same amount of data to encrypt.To avoid such linear approach, here we used some pre-calculated data based on
our experiments.

Power Required Pr (mAh) = Power (P) for x GB data + Offset -------------------
(1)

 Where P(x+1) < P(x) < P(x-1)
 I.e. Power consumption P(x) for x GB of data encryption need to be pre-calculated value. Like 24.3 GB data, need

power consumption between 24.1 GB ~ 24.9 GB. E.g. 100 mAh.
Here "Offset" value has taken, based upon precaution. Because of old battery has larger battery discharge rate.

V. EXPERIMENTS & OBSERVATIONS

E. TEST SETUP
A test has been prepared with below parameters

 Battery Capacity: 4600 mAh
 Available Memory: 22GB
 Total Space : 32 GB

F. PLOT OF DATA ENCRYPTED VERSES POWER
‘Voltage’ column depicts power consumption before and after encryption in mAh unit.
‘Difference’ column depicts power consumption of data encryption of ‘Data Size’ column in Giga Byte units.

Table 1: Power Saved per Encryption Data Size

G. COMPARATIVE STUDY OF VOLTAGE USAGE PER ENCRYPTING

Figure 5: Graphical representation of Power Saved per Encryption Data Size

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijareeie.com

Vol. 6, Issue 1, January 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0601033 228

Above graph in figure 5 represents the power consumption can be saved per encrypting data size in GB. This graph
represents

the power consumption difference mentioned in Table 1. As stated in table 1, Approximately 133 voltage can be

saved while encrypting 2 GB of Data. On an average, we are saving 100 ~ 150 voltage with the proposed solution.

VI. CONCLUSION

A conclusion section is not required. Although a conclusion may review the main points of the paper, do not replicate
the abstract as the conclusion. A conclusion might elaborate on the importance of the work or suggest applications
and extensions.
These experiments have been done based on Android lollipop 5.1 version. In case of Android Disk Encryption,
Google supports Fast Encryption which encrypts only the valid data present on device, so current encryption proposed
method is much faster than earlier version and overcome following four constraints:
 Battery Power should be 80% before starting Encryption
 Phone should be in charging mode
 After encryption started, if we removed power charger, no warning message shown
 Once encryption started, it can’t be halted/paused.
Here one can calculate power requirement based on user data to encrypt. Most of the time, if user data has limited
data, 80% charge is not required. So, with proposed method, one can calculate power requirement dynamically, based
on amount of data which can save the power and overcome current restriction to user.

REFERENCES

1. M.A. Alomari, K. Samsudin, A.R.Ramli, "A Parallel XTS Encryption Mode of Operation," IEEE Student Conference on Reseach and Development

(SCOReD), UPM Serdang, Malaysia, November 2009, pp. 172-175
2. Mohammad Ahmed Alomari, Khairulmizam Samsudin and Abdul Rahman Ramli, "A Study on Encryption Algorithms and Modes for Disk

Encryption", 2009 International Conference on Signal Processing Systems, IEEE
3. Zhaohui Wang, Rahul Murmuria, Angelos Stavrou "Implementing and Optimizing an Encryption Filesystem on Android", IEEE 13th conference on

Mobile Data Management,2012
4. Razvi Doomun, Jayramsingh Doma, Sundeep Tengur "AES-CBC Software Execution Optimization”, IEEE ,2008
5. Fuxiang ZHAO, Shangping WANG "Implementation of a Full Disk Encryption Scheme Based on Double Sequence", IEEE 3rd International

Conference on Multimedia Information networking and Security, 2011
6. Tilo Müller, Felix C. Freiling "A Systematic Assessment of the Security of Full Disk Encryption”, IEEE Transactions on Dependable and Secure

Computing, Sept.-Oct. 1 2015
7. Akshay Desai, Krishna Ankalgi, Harish Yamanur, Siddalingesh S. Navalgund, "Parallelization of AES algorithm for disk encryption using CBC and

ICBC modes", 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)
8. Li Jun, Yu Huiping, "Trusted full disk encryption model based on TPM", The 2nd International Conference on Information Science and Engineering
9. Aaron Fujimoto, Peter Peterson,Peter Reiher, "Comparing the Power of Full Disk Encryption Alternatives", Green Computing Conference (IGCC),

2012 International
10. Zhaohui Wang, Rahul Murmuria, Angelos Stavrou,"Implementing and Optimizing an Encryption Filesystem on Android", 2012 IEEE 13th

International Conference on Mobile Data Management
11. Drew Suarez, Daniel A. Mayer, "Faux Disk Encryption: Realities of Secure Storage on Mobile Devices", 2016 IEEE/ACM International Conference

on Mobile Software Engineering and Systems (MOBILESoft)
12. Fuxiang Zhao, Shangping Wang, "Implementation of a Full Disk Encryption Scheme Based on Double Sequence", 2011 Third International

Conference on Multimedia Information Networking and Security.

BIOGRAPHY

Bappa Mondal, has received Bachelor of Technology from Dr. B. C Roy Engineering
College. Currently pursuing his Master Degree from Delhi technological University. He
has 10+ years of work experience and widely working on information security on
embedded devices.

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijareeie.com

Vol. 6, Issue 1, January 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0601033 229

picture

Sundar Srinivasan, is Research Scholar at Mewar University. He Completed Mtech from
M.S.Ramaiah Institute of technology, B.E from Sri Siddhartha Institute of technology,
Diploma from M.N.Technical Institute in Electronics and Communication Engineering. He
has got 14+ years of IT Experience in Mobile and Embedded technologies. His Area of
research includes Mobile technology, Communication, Cognitive Radio Wireless networks,
Multimedia and DSP Technologies.

Rajesh Kumar Panda, completed Master of Computer Applications from National
Institute of Technology, Durgapur and has 4 years of experience in embedded systems and
Mobile Security technologies, currently working as a Lead engineer in leading Mobile
R&D center.

K.B. Shiva Kumar received the BE degree in Electronics & Communication Engineering
during 1983, ME degree in Electronics during1989, MBA degree during 1998 from
Bangalore University, Bangalore and M Phil Degree during 2009 from Dravidian University
Kuppam. He obtained Ph.D. during 2012 in Information and Communication Technology
from Fakir Mohan University, Balasore, Orissa. He has got 33 years of teaching experience
and has over 60 research publications in National and International Conferences and
Journals. Currently he is working as Professor, Dept. of TC Engineering, Sri Siddhartha
Institute of Technology, Tumkur, Karnataka. His research interests include Signal
processing, Image processing, Steganography and Multirate Systems and Filter Banks.

http://www.ijareeie.com

